Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
ESC Heart Fail ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38638078

RESUMO

AIMS: The PIONEER-HF and PARAGLIDE-HF trials aimed to determine the efficacy and safety of the in-hospital initiation of sacubitril/valsartan in patients hospitalized for AHF. However, whether the inclusion and exclusion criteria of the trials apply to patients encountered in real-world routine care is unclear. This study aimed to investigate the applicability of the PIONEER-HF and PARAGLIDE-HF trials to real-world AHF patients. METHODS AND RESULTS: We identified 28 293 AHF hospitalized patients between August 2008 to August 2017 from the Chang Gung Research Database and classified them into four groups based on left ventricular ejection fraction (LVEF) and trial criteria. Cox proportional hazards models were used to compare the risk of HF hospitalization and cardiovascular (CV) death. We defined PIONEER-HF eligible (n = 3683) and non-eligible (n = 3502) patients with an LVEF ≤40%, and PARAGLIDE-HF eligible (n = 5191) and non-eligible (n = 5832) patients with an LVEF >40%. Over a mean follow-up of 3.5 years, the PIONEER-HF non-eligible and eligible groups exhibited similar rates of HF hospitalization and CV death (41.1% vs. 41.8%, adjusted hazard ratio [aHR]: 0.95; 95% CI: 0.88-1.04). No significant difference was found in the composite outcome between PARAGLIDE-HF non-eligible and eligible groups (36.7% vs. 38.6%; aHR: 0.97; 95% CI: 0.90-1.04). CONCLUSIONS: Using trial criteria, only 31.3% of AHF patients were eligible for sacubitril-valsartan. Yet, non-eligible patients demonstrated similar outcomes to eligible patients, indicating a need for further evaluation of sacubitril-valsartan benefits in non-eligible AHF patients.

2.
Vasc Endovascular Surg ; : 15385744241239492, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477544

RESUMO

OBJECTIVES: Manual compression (MC) or vascular closure devices (VCDs) are used to achieve hemostasis after percutaneous transluminal angioplasty (PTA). However, limited data on the comparative safety and effectiveness of VCDs vs MC in patients with end-stage renal disease (ESRD) undergoing PTA are available. Accordingly, this study compared the safety and effectiveness of VCD and MC in patients with ESRD undergoing PTA. METHODS: This single-center retrospective cohort study included the data of patients with ESRD undergoing peripheral intervention at Chang Gung Memorial Hospital, Taiwan, from January 1, 2019, to June 30, 2022. The patients were divided into VCD and MC groups. The primary endpoint was a composite of puncture site complications, including acute limb ischemia, marked hematoma, pseudoaneurysm, and puncture site bleeding requiring blood transfusion. RESULTS: We included 264 patients with ESRD undergoing PTA, of whom 60 received a VCD and 204 received MC. The incidence of puncture site complications was 3.3% in the VCD group and 4.4% in the MC group (hazard ratio: .75; 95% confidence interval: .16-3.56 L P = 1.000), indicating no significant between-group difference. CONCLUSION: VCDs and MC had comparable safety and effectiveness for hemostasis in patients with ESRD undergoing peripheral intervention.

3.
Int J Biol Macromol ; 260(Pt 1): 129312, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216020

RESUMO

Flavin-dependent halogenases (FDHs) have tremendous applications in synthetic chemistry. A single-component FDH, AetF, exhibits both halogenase and reductase activities in a continuous polypeptide chain. AetF exhibits broad substrate promiscuity and catalyzes the two-step bromination of l-tryptophan (l-Trp) to produce 5-bromotryptophan (5-Br-Trp) and 5,7-dibromo-l-tryptophan (5,7-di-Br-Trp). To elucidate the mechanism of action of AetF, we solved its crystal structure in complex with FAD, FAD/NADP+, FAD/l-Trp, and FAD/5-Br-Trp at resolutions of 1.92-2.23 Å. The obtained crystal structures depict the unprecedented topology of single-component FDH. Structural analysis revealed that the substrate flexibility and dibromination capability of AetF could be attributed to its spacious substrate-binding pocket. In addition, highly-regulated interaction networks between the substrate-recognizing residues and 5-Br-Trp are crucial for the dibromination activity of AetF. Several Ala variants underwent monobromination with >98 % C5-regioselectivity toward l-Trp. These results reveal the catalytic mechanism of single-component FDH for the first time and contribute to efficient FDH protein engineering for biocatalytic halogenation.


Assuntos
Oxirredutases , Triptofano , Oxirredutases/metabolismo , Triptofano/metabolismo , Halogenação , Compostos Orgânicos , Flavinas/metabolismo
4.
Acta Cardiol Sin ; 40(1): 1-44, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38264067

RESUMO

The Taiwan Society of Cardiology (TSOC) and Taiwan Society of Plastic Surgery (TSPS) have collaborated to develop a joint consensus for the management of patients with advanced vascular wounds. The taskforce comprises experts including preventive cardiologists, interventionists, and cardiovascular and plastic surgeons. The consensus focuses on addressing the challenges in diagnosing, treating, and managing complex wounds; incorporates the perfusion evaluation and the advanced vascular wound care team; and highlights the importance of cross-disciplinary teamwork. The aim of this joint consensus is to manage patients with advanced vascular wounds and encourage the adoption of these guidelines by healthcare professionals to improve patient care and outcomes. The guidelines encompass a range of topics, including the definition of advanced vascular wounds, increased awareness, team structure, epidemiology, clinical presentation, medical treatment, endovascular intervention, vascular surgery, infection control, advanced wound management, and evaluation of treatment results. It also outlines a detailed protocol for assessing patients with lower leg wounds, provides guidance on consultation and referral processes, and offers recommendations for various wound care devices, dressings, and products. The 2024 TSOC/TSPS consensus for the management of patients with advanced vascular wounds serves as a catalyst for international collaboration, promoting knowledge exchange and facilitating advancements in the field of advanced vascular wound management. By providing a comprehensive and evidence-based approach, this consensus aims to contribute to improved patient care and outcomes globally.

5.
Int J Biol Macromol ; 256(Pt 2): 128428, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013086

RESUMO

Selenoneine (SEN) is a natural histidine derivative with radical-scavenging activity and shows higher antioxidant potential than its sulfur-containing isolog ergothioneine (EGT). Recently, the SEN biosynthetic pathway in Variovorax paradoxus was reported. Resembling EGT biosynthesis, the committed step of SEN synthesis is catalyzed by a nonheme Fe-dependent oxygenase termed SenA. This enzyme catalyzes oxidative carbon­selenium (C-Se) bond formation to conjugate N-α-trimethyl histidine (TMH) and selenosugar to yield selenoxide; the process parallels the EGT biosynthetic route, in which sulfoxide synthases known as EgtB members catalyze the conjugation of TMH and cysteine or γ-glutamylcysteine to afford sulfoxides. Here, we report the crystal structures of SenA and its complex with TMH and thioglucose (SGlc), an analog of selenoglucose (SeGlc) at high resolution. The overall structure of SenA adopts the archetypical fold of EgtB, which comprises a DinB-like domain and an FGE-like domain. While the TMH-binding site is highly conserved to that of EgtB, a various substrate-enzyme interaction network in the selenosugar-binding site of SenA features a number of water-mediated hydrogen bonds. The obtained structural information is beneficial for understanding the mechanism of SenA-mediated C-Se bond formation.


Assuntos
Ergotioneína , Compostos Organosselênicos , Histidina , Ferro , Oxigenases , Ergotioneína/química , Ergotioneína/metabolismo
6.
J Hazard Mater ; 464: 132965, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979420

RESUMO

Poly(butylene adipate-co-terephthalate) (PBAT) is among the most widely applied synthetic polyesters that are utilized in the packaging and agricultural industries, but the accumulation of PBAT wastes has posed a great burden to ecosystems. Using renewable enzymes to decompose PBAT is an eco-friendly solution to tackle this problem. Recently, we demonstrated that cutinase is the most effective PBAT-degrading enzyme and that an engineered cutinase termed TfCut-DM could completely decompose PBAT film to terephthalate (TPA). Here, we report crystal structures of a variant of leaf compost cutinase in complex with soluble fragments of PBAT, including BTa and TaBTa. In the TaBTa complex, one TPA moiety was located at a polymer-binding site distal to the catalytic center that has never been experimentally validated. Intriguingly, the composition of the distal TPA-binding site shows higher diversity relative to the one proximal to the catalytic center in various cutinases. We thus modified the distal TPA-binding site of TfCut-DM and obtained variants that exhibit higher activity. Notably, the time needed to completely degrade the PBAT film to TPA was shortened to within 24 h by TfCut-DM Q132Y (5813 mol per mol protein). Taken together, the structural information regarding the substrate-binding behavior of PBAT-degrading enzymes could be useful guidance for direct enzyme engineering.


Assuntos
Ácidos Ftálicos , Polímeros , Polímeros/química , Ecossistema , Poliésteres/química , Ácidos Ftálicos/química
7.
Acta Pharm Sin B ; 13(12): 4963-4982, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045063

RESUMO

Endocrine-resistance remains a major challenge in estrogen receptor α positive (ERα+) breast cancer (BC) treatment and constitutively active somatic mutations in ERα are a common mechanism. There is an urgent need to develop novel drugs with new mode of mechanism to fight endocrine-resistance. Given aberrant ERα activity, we herein report the identification of novel covalent selective estrogen receptor degraders (cSERDs) possessing the advantages of both covalent and degradation strategies. A highly potent cSERD 29c was identified with superior anti-proliferative activity than fulvestrant against a panel of ERα+ breast cancer cell lines including mutant ERα. Crystal structure of ERα‒29c complex alongside intact mass spectrometry revealed that 29c disrupted ERα protein homeostasis through covalent targeting C530 and strong hydrophobic interaction collied on H11, thus enforcing a unique antagonist conformation and driving the ERα degradation. These significant effects of the cSERD on ERα homeostasis, unlike typical ERα degraders that occur directly via long side chains perturbing the morphology of H12, demonstrating a distinct mechanism of action (MoA). In vivo, 29c showed potent antitumor activity in MCF-7 tumor xenograft models and low toxicity. This proof-of-principle study verifies that novel cSERDs offering new opportunities for the development of innovative therapies for endocrine-resistant BC.

8.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958663

RESUMO

Piwi-interacting RNAs (piRNAs) are a new class of small, non-coding RNAs, crucial in the regulation of gene expression. Recent research has revealed links between piRNAs, viral defense mechanisms, and certain human cancers. Due to their clinical potential, there is a great interest in identifying piRNAs from large genome databases through efficient computational methods. However, piRNAs lack conserved structure and sequence homology across species, which makes piRNA detection challenging. Current detection algorithms heavily rely on manually crafted features, which may overlook or improperly use certain features. Furthermore, there is a lack of suitable computational tools for analyzing large-scale databases and accurately identifying piRNAs. To address these issues, we propose LSTM4piRNA, a highly efficient deep learning-based method for predicting piRNAs in large-scale genome databases. LSTM4piRNA utilizes a compact LSTM network that can effectively analyze RNA sequences from extensive datasets to detect piRNAs. It can automatically learn the dependencies among RNA sequences, and regularization is further integrated to reduce the generalization error. Comprehensive performance evaluations based on piRNAs from the piRBase database demonstrate that LSTM4piRNA outperforms current advanced methods and is well-suited for analysis with large-scale databases.


Assuntos
Aprendizado Profundo , Pequeno RNA não Traduzido , Humanos , RNA de Interação com Piwi , RNA Interferente Pequeno/metabolismo , Algoritmos , Análise de Sequência de RNA/métodos
9.
Nat Commun ; 14(1): 7425, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973794

RESUMO

The biosynthesis of neurotoxin aetokthonotoxin (AETX) that features a unique structure of pentabrominated biindole nitrile involves a first-of-its-kind nitrile synthase termed AetD, an enzyme that shares very low sequence identity to known structures and catalyzes an unprecedented mechanism. In this study, we resolve the crystal structure of AetD in complex with the substrate 5,7-di-Br-L-Trp. AetD adopts the heme oxygenase like fold and forms a hydrophobic cavity within a helical bundle to accommodate the indole moiety. A diiron cluster comprising two irons that serves as a catalytic center binds to the carboxyl O and the amino N of the substrate. Notably, we demonstrate that the AetD-catalyzed reaction is independent of the bromination of the substrate and also solved crystal structures of AetD in complex with 5-Br-L-Trp and L-Trp. Altogether, the present study reveals the substrate-binding pattern and validates the diiron cluster-comprising active center of AetD, which should provide important basis to support the mechanistic investigations into this class of nitrile synthase.


Assuntos
Heme Oxigenase (Desciclizante) , Óxido Nítrico Sintase , Cristalografia por Raios X , Catálise
10.
Nature ; 621(7980): 840-848, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674084

RESUMO

In both cancer and infections, diseased cells are presented to human Vγ9Vδ2 T cells through an 'inside out' signalling process whereby structurally diverse phosphoantigen (pAg) molecules are sensed by the intracellular domain of butyrophilin BTN3A11-4. Here we show how-in both humans and alpaca-multiple pAgs function as 'molecular glues' to promote heteromeric association between the intracellular domains of BTN3A1 and the structurally similar butyrophilin BTN2A1. X-ray crystallography studies visualized that engagement of BTN3A1 with pAgs forms a composite interface for direct binding to BTN2A1, with various pAg molecules each positioned at the centre of the interface and gluing the butyrophilins with distinct affinities. Our structural insights guided mutagenesis experiments that led to disruption of the intracellular BTN3A1-BTN2A1 association, abolishing pAg-mediated Vγ9Vδ2 T cell activation. Analyses using structure-based molecular-dynamics simulations, 19F-NMR investigations, chimeric receptor engineering and direct measurement of intercellular binding force revealed how pAg-mediated BTN2A1 association drives BTN3A1 intracellular fluctuations outwards in a thermodynamically favourable manner, thereby enabling BTN3A1 to push off from the BTN2A1 ectodomain to initiate T cell receptor-mediated γδ T cell activation. Practically, we harnessed the molecular-glue model for immunotherapeutics design, demonstrating chemical principles for developing both small-molecule activators and inhibitors of human γδ T cell function.


Assuntos
Butirofilinas , Ativação Linfocitária , Fosfoproteínas , Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T , Animais , Humanos , Antígenos CD/imunologia , Antígenos CD/metabolismo , Butirofilinas/imunologia , Butirofilinas/metabolismo , Camelídeos Americanos/imunologia , Simulação de Dinâmica Molecular , Fosfoproteínas/imunologia , Fosfoproteínas/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Cristalografia por Raios X , Ressonância Magnética Nuclear Biomolecular , Termodinâmica
11.
Front Cardiovasc Med ; 10: 1037392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560115

RESUMO

Background: The optimal revascularization strategy for elderly patients with acute coronary syndrome (ACS) remains uncertain. We evaluated the impact of complete revascularization (CR) vs. incomplete revascularization (IR) in elderly ACS patients with multivessel disease (MVD) undergoing percutaneous coronary intervention (PCI). Methods: Using registry data from 2011 to 2019, we conducted a propensity-score matched cohort study. Elderly patients (≥75 years) with ACS and MVD who underwent PCI were divided into CR and IR groups based on angiography during index hospitalization. Major adverse cardiovascular events (MACEs), including all-cause mortality, recurrent non-fatal myocardial infarction, and any revascularization, were assessed at 3-year follow-up. Results: Among 1,018 enrolled patients, 496 (48.7%) underwent CR and 522 (51.3%) received IR. After 1:1 propensity-score matching, we analyzed 395 pairs. At 3-year follow-up, CR was significantly associated with lower MACE risk compared to IR (16.7% vs. 25.6%, HR = 0.65, 95% CI: 0.47-0.88, p = 0.006), driven by reduced all-cause mortality. This benefit was consistent across all pre-specified subgroups, particularly in ST segment elevation (STE)-ACS patients. In non-STE (NSTE)-ACS subgroup analysis, CR was also associated with a lower risk of cardiac mortality compared to IR (HR = 0.30, 95% CI: 0.12-0.75, p = 0.01). Conclusion: In elderly ACS patients with MVD undergoing PCI, CR demonstrates superior long-term outcomes compared to IR, irrespective of STE- or NSTE-ACS presentation.

12.
J Hazard Mater ; 458: 131836, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331057

RESUMO

Ochratoxin A (OTA) is among the most prevalent mycotoxins detected in agroproducts, posing serious threats to human and livestock health. Using enzymes to conduct OTA detoxification is an appealing potential strategy. The recently identified amidohydrolase from Stenotrophomonas acidaminiphila, termed ADH3, is the most efficient OTA-detoxifying enzyme reported thus far and can hydrolyze OTA to nontoxic ochratoxin α (OTα) and L-ß-phenylalanine (Phe). To elucidate the catalytic mechanism of ADH3, we solved the single-particle cryo-electron microscopy (cryo-EM) structures of apo-form, Phe- and OTA-bound ADH3 to an overall resolution of 2.5-2.7 Å. The role of OTA-binding residues was investigated by structural, mutagenesis and biochemical analyses. We also rationally engineered ADH3 and obtained variant S88E, whose catalytic activity was elevated by 3.7-fold. Structural analysis of variant S88E indicates that the E88 side chain provides additional hydrogen bond interactions to the OTα moiety. Furthermore, the OTA-hydrolytic activity of variant S88E expressed in Pichia pastoris is comparable to that of Escherichia coli-expressed enzyme, revealing the feasibility of employing the industrial yeast strain to produce ADH3 and its variants for further applications. These results unveil a wealth of information about the catalytic mechanism of ADH3-mediated OTA degradation and provide a blueprint for rational engineering of high-efficiency OTA-detoxifying machineries.


Assuntos
Agroquímicos , Amidoidrolases , Recuperação e Remediação Ambiental , Micotoxinas , Micotoxinas/química , Micotoxinas/toxicidade , Recuperação e Remediação Ambiental/métodos
13.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240154

RESUMO

Kidney renal clear cell carcinoma (KIRC) accounts for approximately 75% of all renal cancers. The prognosis for patients with metastatic KIRC is poor, with less than 10% surviving five years after diagnosis. Inner membrane mitochondrial protein (IMMT) plays a crucial role in shaping the inner mitochondrial membrane (IMM), regulation of metabolism and innate immunity. However, the clinical relevance of IMMT in KIRC is not yet fully understood, and its role in shaping the tumor immune microenvironment (TIME) remains unclear. This study aimed to investigate the clinical significance of IMMT in KIRC using a combination of supervised learning and multi-omics integration. The supervised learning principle was applied to analyze a TCGA dataset, which was downloaded and split into training and test datasets. The training dataset was used to train the prediction model, while the test and the entire TCGA dataset were used to evaluate its performance. Based on the risk score, the cutoff between the low and high IMMT group was set at median value. A Kaplan-Meier curve, receiver operating characteristic (ROC) curve, principal component analysis (PCA) and Spearman's correlation were conducted to evaluate the prediction ability of the model. Gene Set Enrichment Analysis (GSEA) was used to investigate the critical biological pathways. Immunogenicity, immunological landscape and single-cell analysis were performed to examine the TIME. Databases including Gene Expression Omnibus (GEO), Human Protein Atlas (HPA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) were employed for inter-database verification. Pharmacogenetic prediction was analyzed via single-guide RNA (sgRNA)-based drug sensitivity screening using Q-omics v.1.30. Low expressions of IMMT in tumor predicted dismal prognosis in KIRC patients and correlated with KIRC progression. GSEA revealed that low expressions of IMMT were implicated in mitochondrial inhibition and angiogenetic activation. In addition, low IMMT expressions had associations with reduced immunogenicity and an immunosuppressive TIME. Inter-database verification corroborated the correlation between low IMMT expressions, KIRC tumors and the immunosuppressive TIME. Pharmacogenetic prediction identified lestaurtinib as a potent drug for KIRC in the context of low IMMT expressions. This study highlights the potential of IMMT as a novel biomarker, prognostic predictor and pharmacogenetic predictor to inform the development of more personalized and effective cancer treatments. Additionally, it provides important insights into the role of IMMT in the mechanism underlying mitochondrial activity and angiogenesis development in KIRC, which suggests IMMT as a promising target for the development of new therapies.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Medicina de Precisão , Prognóstico , Relevância Clínica , Multiômica , Proteômica , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Proteínas Mitocondriais , Aprendizado de Máquina Supervisionado , Rim , Microambiente Tumoral/genética , Proteínas Musculares
14.
Eur J Med Chem ; 253: 115328, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037140

RESUMO

Drug resistance is a major challenge in conventional endocrine therapy for estrogen receptor (ER) positive breast cancer (BC). BC is a multifactorial disease, in which simultaneous aromatase (ARO) inhibition and ERα degradation may effectively inhibit the signal transduction of both proteins, thus potentially overcoming drug resistance caused by overexpression or mutation of target proteins. In this study, guided by the X-ray structure of a hit compound 30a in complex with ER-Y537S, a structure-based optimization was performed to get a series of multiacting inhibitors targeting both ERα and ARO, and finally a novel class of potent selective estrogen receptor degraders (SERDs) based on a three-dimensional oxabicycloheptene sulfonamide (OBHSA) scaffold equipped with aromatase inhibitor (AI) activity were identified. Of these dual-targeting SERD-AI hybrids, compound 31q incorporating a 1H-1,2,4-triazole moiety showed excellent ERα degradation activity, ARO inhibitory activity and remarkable antiproliferative activity against BC resistant cells. Furthermore, 31q manifested efficient tumor suppression in MCF-7 tumor xenograft models. Taken together, our study reported for the first time the highly efficient dual-targeting SERD-AI hybrid compounds, which may lay the foundation of translational research for improved treatment of endocrine-resistant BC.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Aromatase/metabolismo , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptores de Estrogênio/metabolismo
15.
BMC Bioinformatics ; 24(1): 122, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977986

RESUMO

BACKGROUND: As the RNA secondary structure is highly related to its stability and functions, the structure prediction is of great value to biological research. The traditional computational prediction for RNA secondary prediction is mainly based on the thermodynamic model with dynamic programming to find the optimal structure. However, the prediction performance based on the traditional approach is unsatisfactory for further research. Besides, the computational complexity of the structure prediction using dynamic programming is [Formula: see text]; it becomes [Formula: see text] for RNA structure with pseudoknots, which is computationally impractical for large-scale analysis. RESULTS: In this paper, we propose REDfold, a novel deep learning-based method for RNA secondary prediction. REDfold utilizes an encoder-decoder network based on CNN to learn the short and long range dependencies among the RNA sequence, and the network is further integrated with symmetric skip connections to efficiently propagate activation information across layers. Moreover, the network output is post-processed with constrained optimization to yield favorable predictions even for RNAs with pseudoknots. Experimental results based on the ncRNA database demonstrate that REDfold achieves better performance in terms of efficiency and accuracy, outperforming the contemporary state-of-the-art methods.


Assuntos
RNA não Traduzido , RNA , RNA/química , Sequência de Bases , Estrutura Secundária de Proteína , Bases de Dados Factuais
16.
Nat Commun ; 14(1): 1645, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964144

RESUMO

Poly(butylene adipate-co-terephthalate) (PBAT), a polyester made of terephthalic acid (TPA), 1,4-butanediol, and adipic acid, is extensively utilized in plastic production and has accumulated globally as environmental waste. Biodegradation is an attractive strategy to manage PBAT, but an effective PBAT-degrading enzyme is required. Here, we demonstrate that cutinases are highly potent enzymes that can completely decompose PBAT films in 48 h. We further show that the engineered cutinases, by applying a double mutation strategy to render a more flexible substrate-binding pocket exhibit higher decomposition rates. Notably, these variants produce TPA as a major end-product, which is beneficial feature for the future recycling economy. The crystal structures of wild type and double mutation of a cutinase from Thermobifida fusca in complex with a substrate analogue are also solved, elucidating their substrate-binding modes. These structural and biochemical analyses enable us to propose the mechanism of cutinase-mediated PBAT degradation.


Assuntos
Adipatos , Poliésteres , Poliésteres/metabolismo
17.
Acta Cardiol Sin ; 39(1): 97-108, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685160

RESUMO

Peripheral artery disease (PAD) imposes a heavy burden of major adverse cardiovascular events that are associated with considerable mortality and morbidity, and major adverse limb events (e.g., thrombectomy, revascularization, amputation) that can substantially impact patients' daily functioning and quality of life. Global registry data have indicated that PAD is an underdiagnosed disease in Taiwan, and its associated risk factors remain inadequately controlled. This review discusses the burden of PAD in Taiwan, major guidelines on PAD management, and the latest clinical trial outcomes. Practical experience, opinions, and the latest trial data were integrated to derive a series of clinical algorithms - patient referral, PAD diagnosis, and the antithrombotic management of PAD. These algorithms can be adapted not only by physicians in Taiwan involved in the clinical management of patients with PAD but also by general practitioners in local clinics and regional hospital settings, with the ultimate aim of improving the totality of PAD patient care in Taiwan.

18.
Methods Mol Biol ; 2586: 147-162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36705903

RESUMO

TOPAS (TOPological network-based Alignment of Structural RNAs) is a network-based alignment algorithm that predicts structurally sound pairwise alignment of RNAs. In order to take advantage of recent advances in comparative network analysis for efficient structurally sound RNA alignment, TOPAS constructs topological network representations for RNAs, which consist of sequential edges connecting nucleotide bases as well as structural edges reflecting the underlying folding structure. Structural edges are weighted by the estimated base-pairing probabilities. Next, the constructed networks are aligned using probabilistic network alignment techniques, which yield a structurally sound RNA alignment that considers both the sequence similarity and the structural similarity between the given RNAs. Compared to traditional Sankoff-style algorithms, this network-based alignment scheme leads to a significant reduction in the overall computational cost while yielding favorable alignment results. Another important benefit is its capability to handle arbitrary folding structures, which can potentially lead to more accurate alignment for RNAs with pseudoknots.


Assuntos
Algoritmos , RNA , Sequência de Bases , Conformação de Ácido Nucleico , Alinhamento de Sequência , Análise de Sequência de RNA/métodos , RNA/genética , RNA/química
19.
Food Chem ; 409: 135281, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36586251

RESUMO

The effects of transglutaminase (TGase, 1.0 unit/mL) with heat (95 °C, 5 min), 2-mercaptoethanol (2-ME, 0.83 %), and l-cysteine (l-Cys, 50 mM) pretreatment on the cross-linking of ovalbumin (OVA) and ovotransferrin (OVT) were investigated. SDS-PAGE revealed that although the polymerization of OVA and OVT did not occur after 3 h of incubation at 40 °C with TGase, OVA polymerized into high molecular weight polymers following TGase with 2-ME and heat pretreatment after 3 h of incubation. The surface hydrophobicity and reactive sulfhydryl (SH) groups of OVA samples significantly increased from 4065.7 ± 136.7 and 89.3 ± 1.2 SH groups (µmol/g) to 31483.6 ± 342.7 and 119.5 ± 3.7 SH groups (µmol/g), respectively. Similar results were obtained for OVT with TGase and l-Cys pretreatment and a 3-h incubation at 40 °C. The use of TGase, a reducing agent, and/or heat pretreatment can be used for the polymerization of OVA and OVT.


Assuntos
Substâncias Redutoras , Transglutaminases , Ovalbumina , Transglutaminases/metabolismo , Conalbumina , Temperatura Alta , Mercaptoetanol
20.
Bioresour Bioprocess ; 10(1): 26, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38647782

RESUMO

Using enzymes to hydrolyze and recycle poly(ethylene terephthalate) (PET) is an attractive eco-friendly approach to manage the ever-increasing PET wastes, while one major challenge to realize the commercial application of enzyme-based PET degradation is to establish large-scale production methods to produce PET hydrolytic enzyme. To achieve this goal, we exploited the industrial strain Pichia pastoris to express a PET hydrolytic enzyme from Caldimonas taiwanensis termed CtPL-DM. In contrast to the protein expressed in Escherichia coli, CtPL-DM expressed in P. pastoris is inactive in PET degradation. Structural analysis indicates that a putative N-glycosylation site N181 could restrain the conformational change of a substrate-binding Trp and hamper the enzyme action. We thus constructed N181A to remove the N-glycosylation and found that the PET hydrolytic activity of this variant was restored. The performance of N181A was further enhanced via molecular engineering. These results are of valuable in terms of PET hydrolytic enzyme production in industrial strains in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...